作者:杨亨 2019-12-25 14:35:33
云计算
分布式
Redis 近来,分布式的问题被广泛提及,比如分布式事务、分布式框架、ZooKeeper、SpringCloud等等。

我们提供的服务有:成都网站制作、网站建设、微信公众号开发、网站优化、网站认证、镇赉ssl等。为近千家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的镇赉网站制作公司
近来,分布式的问题被广泛提及,比如分布式事务、分布式框架、ZooKeeper、SpringCloud等等。本文先回顾锁的概念,再介绍分布式锁,以及如何用Redis来实现分布式锁。
首先,回顾一下我们工作学习中的锁的概念。
为什么要先讲锁再讲分布式锁呢?
我们都清楚,锁的作用是要解决多线程对共享资源的访问而产生的线程安全问题,而在平时生活中用到锁的情况其实并不多,可能有些朋友对锁的概念和一些基本的使用不是很清楚,所以我们先看锁,再深入介绍分布式锁。
通过一个卖票的小案例来看,比如大家去抢dota2 ti9门票,如果不加锁的话会出现什么问题?此时代码如下:
- package Thread;
 - import java.util.concurrent.TimeUnit;
 - public class Ticket {
 - /**
 - * 初始库存量
 - * */
 - Integer ticketNum = 8;
 - public void reduce(int num){
 - //判断库存是否够用
 - if((ticketNum - num) >= 0){
 - try {
 - TimeUnit.MILLISECONDS.sleep(200);
 - }catch (InterruptedException e){
 - e.printStackTrace();
 - }
 - ticketNum -= num;
 - System.out.println(Thread.currentThread().getName() + "成功卖出"
 - + num + "张,剩余" + ticketNum + "张票");
 - }else {
 - System.err.println(Thread.currentThread().getName() + "没有卖出"
 - + num + "张,剩余" + ticketNum + "张票");
 - }
 - }
 - public static void main(String[] args) throws InterruptedException{
 - Ticket ticket = new Ticket();
 - //开启10个线程进行抢票,按理说应该有两个人抢不到票
 - for(int i=0;i<10;i++){
 - new Thread(() -> ticket.reduce(1),"用户" + (i + 1)).start();
 - }
 - Thread.sleep(1000L);
 - }
 - }
 
代码分析:这里有8张ti9门票,设置了10个线程(也就是模拟10个人)去并发抢票,如果抢成功了显示成功,抢失败的话显示失败。按理说应该有8个人抢成功了,2个人抢失败,下面来看运行结果:
我们发现运行结果和预期的情况不一致,居然10个人都买到了票,也就是说出现了线程安全的问题,那么是什么原因导致的呢?
原因就是多个线程之间产生了时间差。
如图所示,只剩一张票了,但是两个线程都读到的票余量是1,也就是说线程B还没有等到线程A改库存就已经抢票成功了。
- 怎么解决呢?想必大家都知道,加个synchronized关键字就可以了,在一个线程进行reduce方法的时候,其他线程则阻塞在等待队列中,这样就不会发生多个线程对共享变量的竞争问题。
 - 举个例子
 - 比如我们去健身房健身,如果好多人同时用一台机器,同时在一台跑步机上跑步,就会发生很大的问题,大家会打得不可开交。如果我们加一把锁在健身房门口,只有拿到锁的钥匙的人才可以进去锻炼,其他人在门外等候,这样就可以避免大家对健身器材的竞争。代码如下:
 - public synchronized void reduce(int num){
 - //判断库存是否够用
 - if((ticketNum - num) >= 0){
 - try {
 - TimeUnit.MILLISECONDS.sleep(200);
 - }catch (InterruptedException e){
 - e.printStackTrace();
 - }
 - ticketNum -= num;
 - System.out.println(Thread.currentThread().getName() + "成功卖出"
 - + num + "张,剩余" + ticketNum + "张票");
 - }else {
 - System.err.println(Thread.currentThread().getName() + "没有卖出"
 - + num + "张,剩余" + ticketNum + "张票");
 - }
 - }
 
运行结果:
果不其然,结果有两个人没有成功抢到票,看来我们的目的达成了。
2.1 缩短锁的持有时间
事实上,按照我们对日常生活的理解,不可能整个健身房只有一个人在运动。所以我们只需要对某一台机器加锁就可以了,比如一个人在跑步,另一个人可以去做其他的运动。
对于票务系统来说,我们只需要对库存的修改操作的代码加锁就可以了,别的代码还是可以并行进行,这样会大大减少锁的持有时间,代码修改如下:
- public void reduceByLock(int num){
 - boolean flag = false;
 - synchronized (ticketNum){
 - if((ticketNum - num) >= 0){
 - ticketNum -= num;
 - flag = true;
 - }
 - }
 - if(flag){
 - System.out.println(Thread.currentThread().getName() + "成功卖出"
 - + num + "张,剩余" + ticketNum + "张票");
 - }
 - else {
 - System.err.println(Thread.currentThread().getName() + "没有卖出"
 - + num + "张,剩余" + ticketNum + "张票");
 - }
 - if(ticketNum == 0){
 - System.out.println("耗时" + (System.currentTimeMillis() - startTime) + "毫秒");
 - }
 - }
 - 这样做的目的是充分利用cpu的资源,提高代码的执行效率。
 - 这里我们对两种方式的时间做个打印:
 - public synchronized void reduce(int num){
 - //判断库存是否够用
 - if((ticketNum - num) >= 0){
 - try {
 - TimeUnit.MILLISECONDS.sleep(200);
 - }catch (InterruptedException e){
 - e.printStackTrace();
 - }
 - ticketNum -= num;
 - if(ticketNum == 0){
 - System.out.println("耗时" + (System.currentTimeMillis() - startTime) + "毫秒");
 - }
 - System.out.println(Thread.currentThread().getName() + "成功卖出"
 - + num + "张,剩余" + ticketNum + "张票");
 - }else {
 - System.err.println(Thread.currentThread().getName() + "没有卖出"
 - + num + "张,剩余" + ticketNum + "张票");
 - }
 - }
 
果然,只对部分代码加锁会大大提供代码的执行效率。
所以,在解决了线程安全的问题后,我们还要考虑到加锁之后的代码执行效率问题。
2.2 减少锁的粒度
举个例子,有两场电影,分别是最近刚上映的魔童哪吒和蜘蛛侠,我们模拟一个支付购买的过程,让方法等待,加了一个CountDownLatch的await方法,运行结果如下:
- package Thread;
 - import java.util.concurrent.CountDownLatch;
 - public class Movie {
 - private final CountDownLatch latch = new CountDownLatch(1);
 - //魔童哪吒
 - private Integer babyTickets = 20;
 - //蜘蛛侠
 - private Integer spiderTickets = 100;
 - public synchronized void showBabyTickets() throws InterruptedException{
 - System.out.println("魔童哪吒的剩余票数为:" + babyTickets);
 - //购买
 - latch.await();
 - }
 - public synchronized void showSpiderTickets() throws InterruptedException{
 - System.out.println("蜘蛛侠的剩余票数为:" + spiderTickets);
 - //购买
 - }
 - public static void main(String[] args) {
 - Movie movie = new Movie();
 - new Thread(() -> {
 - try {
 - movie.showBabyTickets();
 - }catch (InterruptedException e){
 - e.printStackTrace();
 - }
 - },"用户A").start();
 - new Thread(() -> {
 - try {
 - movie.showSpiderTickets();
 - }catch (InterruptedException e){
 - e.printStackTrace();
 - }
 - },"用户B").start();
 - }
 - }
 
执行结果:
魔童哪吒的剩余票数为:20
我们发现买哪吒票的时候阻塞会影响蜘蛛侠票的购买,而实际上,这两场电影之间是相互独立的,所以我们需要减少锁的粒度,将movie整个对象的锁变为两个全局变量的锁,修改代码如下:
- public void showBabyTickets() throws InterruptedException{
 - synchronized (babyTickets) {
 - System.out.println("魔童哪吒的剩余票数为:" + babyTickets);
 - //购买
 - latch.await();
 - }
 - }
 - public void showSpiderTickets() throws InterruptedException{
 - synchronized (spiderTickets) {
 - System.out.println("蜘蛛侠的剩余票数为:" + spiderTickets);
 - //购买
 - }
 - }
 
执行结果:
魔童哪吒的剩余票数为:20
蜘蛛侠的剩余票数为:100
现在两场电影的购票不会互相影响了,这就是第二个优化锁的方式:减少锁的粒度。顺便提一句,Java并发包里的ConcurrentHashMap就是把一把大锁变成了16把小锁,通过分段锁的方式达到高效的并发安全。
2.3 锁分离
锁分离就是常说的读写分离,我们把锁分成读锁和写锁,读的锁不需要阻塞,而写的锁要考虑并发问题。
这里就不一一讲述每一种锁的概念了,大家可以自己学习,锁还可以按照偏向锁、轻量级锁、重量级锁来分类。
了解了锁的基本概念和锁的优化后,重点介绍分布式锁的概念。
上图所示是我们搭建的分布式环境,有三个购票项目,对应一个库存,每一个系统会有多个线程,和上文一样,对库存的修改操作加上锁,能不能保证这6个线程的线程安全呢?
当然是不能的,因为每一个购票系统都有各自的JVM进程,互相独立,所以加synchronized只能保证一个系统的线程安全,并不能保证分布式的线程安全。
所以需要对于三个系统都是公共的一个中间件来解决这个问题。
这里我们选择Redis来作为分布式锁,多个系统在Redis中set同一个key,只有key不存在的时候,才能设置成功,并且该key会对应其中一个系统的唯一标识,当该系统访问资源结束后,将key删除,则达到了释放锁的目的。
4.1 分布式锁需要注意哪些点
1)互斥性
在任意时刻只有一个客户端可以获取锁。
这个很容易理解,所有的系统中只能有一个系统持有锁。
2)防死锁
假如一个客户端在持有锁的时候崩溃了,没有释放锁,那么别的客户端无法获得锁,则会造成死锁,所以要保证客户端一定会释放锁。
Redis中我们可以设置锁的过期时间来保证不会发生死锁。
3)持锁人解锁
解铃还须系铃人,加锁和解锁必须是同一个客户端,客户端A的线程加的锁必须是客户端A的线程来解锁,客户端不能解开别的客户端的锁。
4)可重入
当一个客户端获取对象锁之后,这个客户端可以再次获取这个对象上的锁。
4.2 Redis分布式锁流程
Redis分布式锁的具体流程:
1)首先利用Redis缓存的性质在Redis中设置一个key-value形式的键值对,key就是锁的名称,然后客户端的多个线程去竞争锁,竞争成功的话将value设为客户端的唯一标识。
2)竞争到锁的客户端要做两件事:
需要根据业务需要,不断的压力测试来决定有效期的长短。
所以这里的value就设置成唯一标识(比如uuid)。
3)访问共享资源
4)释放锁,释放锁有两种方式,第一种是有效期结束后自动释放锁,第二种是先根据唯一标识判断自己是否有释放锁的权限,如果标识正确则释放锁。
4.3 加锁和解锁
4.3.1 加锁
1)setnx命令加锁
set if not exists 我们会用到Redis的命令setnx,setnx的含义就是只有锁不存在的情况下才会设置成功。
2)设置锁的有效时间,防止死锁 expire
加锁需要两步操作,思考一下会有什么问题吗?
假如我们加锁完之后客户端突然挂了呢?那么这个锁就会成为一个没有有效期的锁,接着就可能发生死锁。虽然这种情况发生的概率很小,但是一旦出现问题会很严重,所以我们也要把这两步合为一步。
幸运的是,Redis3.0已经把这两个指令合在一起成为一个新的指令。
来看jedis的官方文档中的源码:
- public String set(String key, String value, String nxxx, String expx, long time) {
 - this.checkIsInMultiOrPipeline();
 - this.client.set(key, value, nxxx, expx, time);
 - return this.client.getStatusCodeReply();
 - }
 
这就是我们想要的!
4.3.2 解锁
解锁也是两步,同样也要保证解锁的原子性,把两步合为一步。
这就无法借助于Redis了,只能依靠Lua脚本来实现。
- if Redis.call("get",key==argv[1])then
 - return Redis.call("del",key)
 - else return 0 end
 
这就是一段判断是否自己持有锁并释放锁的Lua脚本。
为什么Lua脚本是原子性呢?因为Lua脚本是jedis用eval()函数执行的,如果执行则会全部执行完成。
- public class RedisDistributedLock implements Lock {
 - //上下文,保存当前锁的持有人id
 - private ThreadLocal
 lockContext = new ThreadLocal (); - //默认锁的超时时间
 - private long time = 100;
 - //可重入性
 - private Thread ownerThread;
 - public RedisDistributedLock() {
 - }
 - public void lock() {
 - while (!tryLock()){
 - try {
 - Thread.sleep(100);
 - }catch (InterruptedException e){
 - e.printStackTrace();
 - }
 - }
 - }
 - public boolean tryLock() {
 - return tryLock(time,TimeUnit.MILLISECONDS);
 - }
 - public boolean tryLock(long time, TimeUnit unit){
 - String id = UUID.randomUUID().toString(); //每一个锁的持有人都分配一个唯一的id
 - Thread t = Thread.currentThread();
 - Jedis jedis = new Jedis("127.0.0.1",6379);
 - //只有锁不存在的时候加锁并设置锁的有效时间
 - if("OK".equals(jedis.set("lock",id, "NX", "PX", unit.toMillis(time)))){
 - //持有锁的人的id
 - lockContext.set(id); ①
 - //记录当前的线程
 - setOwnerThread(t); ②
 - return true;
 - }else if(ownerThread == t){
 - //因为锁是可重入的,所以需要判断当前线程已经持有锁的情况
 - return true;
 - }else {
 - return false;
 - }
 - }
 - private void setOwnerThread(Thread t){
 - this.ownerThread = t;
 - }
 - public void unlock() {
 - String script = null;
 - try{
 - Jedis jedis = new Jedis("127.0.0.1",6379);
 - script = inputStream2String(getClass().getResourceAsStream("/Redis.Lua"));
 - if(lockContext.get()==null){
 - //没有人持有锁
 - return;
 - }
 - //删除锁 ③
 - jedis.eval(script, Arrays.asList("lock"), Arrays.asList(lockContext.get()));
 - lockContext.remove();
 - }catch (Exception e){
 - e.printStackTrace();
 - }
 - }
 - /**
 - * 将InputStream转化成String
 - * @param is
 - * @return
 - * @throws IOException
 - */
 - public String inputStream2String(InputStream is) throws IOException {
 - ByteArrayOutputStream baos = new ByteArrayOutputStream();
 - int i = -1;
 - while ((i = is.read()) != -1) {
 - baos.write(i);
 - }
 - return baos.toString();
 - }
 - public void lockInterruptibly() throws InterruptedException {
 - }
 - public Condition newCondition() {
 - return null;
 - }
 - }
 
6.1 基于数据库的分布式锁
1)实现方式
获取锁的时候插入一条数据,解锁时删除数据。
2)缺点
6.2 基于zookeeper的分布式锁
1)实现方式
加锁时在指定节点的目录下创建一个新节点,释放锁的时候删除这个临时节点。因为有心跳检测的存在,所以不会发生死锁,更加安全。
2)缺点
性能一般,没有Redis高效。
所以:
本文从锁的基本概念出发,提出多线程访问共享资源会出现的线程安全问题,然后通过加锁的方式去解决线程安全的问题,这个方法会性能会下降,需要通过:缩短锁的持有时间、减小锁的粒度、锁分离三种方式去优化锁。
之后介绍了分布式锁的4个特点:
然后用Redis实现了分布式锁,加锁的时候用到了Redis的命令去加锁,解锁的时候则借助了Lua脚本来保证原子性。
最后对比了三种分布式锁的优缺点和使用场景。
希望大家对分布式锁有新的理解,也希望大家在考虑解决问题的同时要多想想性能的问题。
【本文是51CTO专栏机构宜信技术学院的原创文章,微信公众号“宜信技术学院( id: CE_TECH)”】
                网页名称:锁的基本概念到Redis分布式锁实现
                
                网站链接:http://www.csdahua.cn/qtweb/news18/27718.html
            
网站建设、网络推广公司-快上网,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 快上网